- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bayliss, M (2)
-
Floyd, B (2)
-
Hernández-Lang, D (2)
-
Katzenberger, A (2)
-
Klein, M (2)
-
McDonald, M (2)
-
Saro, A (2)
-
Zenteno, A (2)
-
Aguena, M (1)
-
Aldás, F (1)
-
Allam, S (1)
-
Avila, S (1)
-
Bertin, E (1)
-
Bhargava, S (1)
-
Brooks, D (1)
-
Buckley-Geer, E (1)
-
Burke, D L (1)
-
Capasso, R (1)
-
Carnero Rosell, A (1)
-
Carrasco, E R (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We present MUSE spectroscopy, Megacam imaging, and Chandra X-ray emission for SPT-CL J0307-6225, a $z = 0.58$ major merging galaxy cluster with a large BCG-SZ centroid separation and a highly disturbed X-ray morphology. The galaxy density distribution shows two main overdensities with separations of 0.144 and 0.017 arcmin to their respective BCGs. We characterize the central regions of the two colliding structures, namely 0307-6225N and 0307-6225S, finding velocity derived masses of M200, N = 2.44 ± 1.41 × 1014M⊙ and M200, S = 3.16 ± 1.88 × 1014M⊙, with a line-of-sight velocity difference of |Δv| = 342 km s−1. The total dynamically derived mass is consistent with the SZ derived mass of 7.63 h$$_{70}^{-1}$$ ± 1.36 × 1014M⊙. We model the merger using the Monte Carlo Merger Analysis Code, estimating a merging angle of 36$$^{+14}_{-12}$$ ° with respect to the plane of the sky. Comparing with simulations of a merging system with a mass ratio of 1:3, we find that the best scenario is that of an ongoing merger that began 0.96$$^{+0.31}_{-0.18}$$ Gyr ago. We also characterize the galaxy population using Hδ and [O ii] λ3727 Å lines. We find that most of the emission-line galaxies belong to 0307-6225S, close to the X-ray peak position with a third of them corresponding to red-cluster sequence galaxies, and the rest to blue galaxies with velocities consistent with recent periods of accretion. Moreover, we suggest that 0307-6225S suffered a previous merger, evidenced through the two equally bright BCGs at the centre with a velocity difference of ∼674 km s−1.more » « less
-
Zenteno, A; Hernández-Lang, D; Klein, M; Vergara Cervantes, C; Hollowood, D L; Bhargava, S; Palmese, A; Strazzullo, V; Romer, A K; Mohr, J J; et al (, Monthly Notices of the Royal Astronomical Society)ABSTRACT We use imaging from the first three years of the Dark Energy Survey to characterize the dynamical state of 288 galaxy clusters at 0.1 ≲ z ≲ 0.9 detected in the South Pole Telescope (SPT) Sunyaev–Zeldovich (SZ) effect survey (SPT-SZ). We examine spatial offsets between the position of the brightest cluster galaxy (BCG) and the centre of the gas distribution as traced by the SPT-SZ centroid and by the X-ray centroid/peak position from Chandra and XMM data. We show that the radial distribution of offsets provides no evidence that SPT SZ-selected cluster samples include a higher fraction of mergers than X-ray-selected cluster samples. We use the offsets to classify the dynamical state of the clusters, selecting the 43 most disturbed clusters, with half of those at z ≳ 0.5, a region seldom explored previously. We find that Schechter function fits to the galaxy population in disturbed clusters and relaxed clusters differ at z > 0.55 but not at lower redshifts. Disturbed clusters at z > 0.55 have steeper faint-end slopes and brighter characteristic magnitudes. Within the same redshift range, we find that the BCGs in relaxed clusters tend to be brighter than the BCGs in disturbed samples, while in agreement in the lower redshift bin. Possible explanations includes a higher merger rate, and a more efficient dynamical friction at high redshift. The red-sequence population is less affected by the cluster dynamical state than the general galaxy population.more » « less
An official website of the United States government
